Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Funct Integr Genomics ; 23(3): 223, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410302

ABSTRACT

The anillin actin-binding protein (ANLN) is immensely overexpressed in cancers, including lung cancer (LC). Phytocompounds have gained interest due to their broader potential and reduced unwanted effects. Screening numerous compounds presents a challenge, but in silico molecular docking is pragmatic. The present study aims to identify the role of ANLN in lung adenocarcinoma (LUAD), along with identification and interaction analysis of anticancer and ANLN inhibitory phytocompounds followed by molecular dynamics (MD) simulation. Using a systematic approach, we found that ANLN is significantly overexpressed in LUAD and mutated with a frequency of 3.73%. It is linked with advanced stages, clinicopathological parameters, worsening of relapse-free survival (RFS), and overall survival (OS), pinpointing its oncogenic and prognostic potential. High-throughput screening and molecular docking of phytocompounds revealed that kaempferol (flavonoid aglycone) interacts strongly with the active site of ANLN protein via hydrogen bonds, Vander Waals interactions, and acts as a potent inhibitor. Furthermore, we discovered that ANLN expression was found to be significantly higher (p) in LC cells compared to normal cells. This is a propitious and first study to demonstrate ANLN and kaempferol interactions, which might eventually lead to removal of rout from cell cycle regulation posed by ANLN overexpression and allow it to resume normal processes of proliferation. Overall, this approach suggested a plausible biomarker role of ANLN and the combination of molecular docking subsequently led to the identification of contemporary phytocompounds, bearing symbolic anticancer effects. The findings would be advantageous for pharmaceutics but require validation using in vitro and in vivo methods. HIGHLIGHTS: • ANLN is significantly overexpressed in LUAD. • ANLN is implicated in the infiltration of TAMs and altering plasticity of TME. • Kaempferol (potential ANLN inhibitor) shows important interactions with ANLN which could remove the alterations in cell cycle regulation, imposed by ANLN overexpression eventually leading to normal process of cell proliferation.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Microfilament Proteins/metabolism , Kaempferols , Prognosis , Molecular Docking Simulation , Multiomics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism
3.
J Funct Biomater ; 14(3)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36976050

ABSTRACT

Despite the existence of modern antidiabetic medications, diabetes still affects millions of individuals worldwide, with a high death and disability rate. There has been a concerted search for alternative natural medicinal agents; luteolin (LUT), a polyphenolic molecule, might be a good choice, both because of its efficacy and because of it having fewer side effects, compared to conventional medicines. This study aims to explore the antidiabetic potential of LUT in diabetic rats, induced by streptozotocin (STZ; 50 mg/kg b.w.), intraperitoneally. The level of blood glucose, oral glucose tolerance test (OGTT), body weight, glycated hemoglobin A1c (HbA1c), lipidemic status, antioxidant enzymes, and cytokines were assessed. Also, its action mechanism was explored through molecular docking and molecular dynamics simulations. Oral supplementation of LUT for 21 days resulted in a significant decrease in the blood glucose, oxidative stress, and proinflammatory cytokine levels, and modulated the hyperlipidemia profile. LUT also ameliorated the tested biomarkers of liver and kidney function. In addition, LUT markedly reversed the damage to the pancreas, liver, and kidney cells. Moreover, molecular docking and molecular dynamics simulations revealed excellent antidiabetic behavior of LUT. In conclusion, the current investigation revealed that LUT possesses antidiabetic activity, through the reversing of hyperlipidemia, oxidative stress, and proinflammatory status in diabetic groups. Therefore, LUT might be a good remedy for the management or treatment of diabetes.

4.
Molecules ; 27(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36558055

ABSTRACT

This research work focuses on the potential application of an organic compound, santalol, obtained from santalum album, in the inhibition of the enzyme tyrosinase, which is actively involved in the biosynthesis of melanin pigment. Over-production of melanin causes undesirable pigmentation in humans as well as other organisms and significantly downgrades their aesthetic value. The study is designed to explain the purification of tyrosinase from the mushroom Agaricus bisporus, followed by activity assays and enzyme kinetics to give insight into the santalol-modulated tyrosinase inhibition in a dose-dependent manner. The multi-spectroscopic techniques such as UV-vis, fluorescence, and isothermal calorimetry are employed to deduce the efficiency of santalol as a potential candidate against tyrosinase enzyme activity. Experimental results are further verified by molecular docking. Santalol, derived from the essential oils of santalum album, has been widely used as a remedy for skin disorders and a potion for a fair complexion since ancient times. Based on enzyme kinetics and biophysical characterization, this is the first scientific evidence where santalol inhibits tyrosinase, and santalol may be employed in the agriculture, food, and cosmetic industries to prevent excess melanin formation or browning.


Subject(s)
Melanins , Monophenol Monooxygenase , Humans , Molecular Docking Simulation , Polycyclic Sesquiterpenes , Enzyme Inhibitors/chemistry
5.
Ecotoxicol Environ Saf ; 246: 114128, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36193587

ABSTRACT

Arsenic (As) contamination is continuously increasing in the groundwaters and soils around the world causing toxicity in the plants with a detrimental effect on physiology, growth, and yield. In a hydroponic system, thirty-day-old plants of Trigonella foenum-graecum were subjected to 0, 50, or 100 µM NaHAsO40.7 H2O for 10 days. The magnitude of oxidative stress increased, whereas growth indices and photosynthetic parameters decreased in a dose-dependent manner. The efficiency of photosystem II in terms of Hill reaction activity (HRA) or chlorophyll-a was adversely affected by As stress. The antioxidant potential of plants regarding ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was enhanced, indicating the augmented resistance mechanism in plants to counter As stress. The metabolite analysis of leaf extracts revealed many As responsive metabolites including amino acids, organic acids, sugars/polyols, and others. Phenylalanine and citrulline were highly accumulated at 50 or 100 µM As, salicylic acid accumulated more at 50 µM of As while ascorbic acid notably increased at 100 µM of As. At 50 or 100 µM As, the glucose and fructose contents increased while the sucrose content decreased. At both As doses, tagatose and glucitol contents were 13 times higher than controls. Varied accumulation of metabolites could be associated with the different As doses that represent the range of tolerance in T. foenum-graecum towards As toxicity. Pathway analysis of metabolites revealed that amino acid and carbohydrate metabolism and the citrate cycle play important roles under As stress. This study helps in a better metabolomic understanding of the dose-dependent toxicity and response of As in T. foenum-graecum.


Subject(s)
Arsenic , Trigonella , Antioxidants/metabolism , Arsenic/metabolism , Plant Extracts/pharmacology , Oxidative Stress , Photosynthesis
6.
Biology (Basel) ; 11(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36009841

ABSTRACT

Mycobacterium tuberculosis has seen tremendous success as it has developed defenses to reside in host alveoli despite various host-related stress circumstances. Rv1636 is a universal stress protein contributing to mycobacterial survival in different host-derived stress conditions. Both ATP and cAMP can be bound with the Rv1636, and their binding actions are independent of one another. ß-Amyrin, a triterpenoid compound, is abundant in medicinal plants and has many pharmacological properties and broad therapeutic potential. The current study uses biochemical, biophysical, and computational methods to define the binding of Rv1636 with ß-Amyrin. A substantial interaction between ß-Amyrin and Rv1636 was discovered by molecular docking studies, which helped decipher the critical residues involved in the binding process. VAL60 is a crucial residue found in the complexes of both Rv1636_ß-Amyrin and Rv1636-ATP. Additionally, the Rv1636_ß-Amyrin complex was shown to be stable by molecular dynamics simulation studies (MD), with minimal changes observed during the simulation. In silico observations were further complemented by in vitro assays. Successful cloning, expression, and purification of Rv1636 were accomplished using Ni-NTA affinity chromatography. The results of the ATPase activity assay indicated that Rv1636's ATPase activity was inhibited in the presence of various ß-Amyrin concentrations. Additionally, circular dichroism spectroscopy (CD) was used to examine modifications to Rv1636 secondary structure upon binding of ß-Amyrin. Finally, isothermal titration calorimetry (ITC) advocated spontaneous binding of ß-Amyrin with Rv1636 elucidating the thermodynamics of the Rv1636_ß-Amyrin complex. Thus, the study establishes that ß-Amyrin binds to Rv1636 with a significant affinity forming a stable complex and inhibiting its ATPase activity. The present study suggests that ß-Amyrin might affect the functioning of Rv1636, which makes the bacterium vulnerable to different stress conditions.

7.
Molecules ; 27(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889451

ABSTRACT

The emergence of drug resistance and the limited number of approved antitubercular drugs prompted identification and development of new antitubercular compounds to cure Tuberculosis (TB). In this work, an attempt was made to identify potential natural compounds that target mycobacterial proteins. Three plant extracts (A. aspera, C. gigantea and C. procera) were investigated. The ethyl acetate fraction of the aerial part of A. aspera and the flower ash of C. gigantea were found to be effective against M. tuberculosis H37Rv. Furthermore, the GC-MS analysis of the plant fractions confirmed the presence of active compounds in the extracts. The Mycobacterium target proteins, i.e., available PDB dataset proteins and proteins classified in virulence, detoxification, and adaptation, were investigated. A total of ten target proteins were shortlisted for further study, identified as follows: BpoC, RipA, MazF4, RipD, TB15.3, VapC15, VapC20, VapC21, TB31.7, and MazF9. Molecular docking studies showed that ß-amyrin interacted with most of these proteins and its highest binding affinity was observed with Mycobacterium Rv1636 (TB15.3) protein. The stability of the protein-ligand complex was assessed by molecular dynamic simulation, which confirmed that ß-amyrin most firmly interacted with Rv1636 protein. Rv1636 is a universal stress protein, which regulates Mycobacterium growth in different stress conditions and, thus, targeting Rv1636 makes M. tuberculosis vulnerable to host-derived stress conditions.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Oleanolic Acid , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Heat-Shock Proteins , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology
8.
Biotechnol Appl Biochem ; 69(1): 296-312, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33469971

ABSTRACT

Proteomic information revealed approximately 3,923 proteins in Mycobacterium tuberculosis H37 Rv genome of which around ∼25% of proteins are hypothetical proteins (HPs). The present work comprises computational approaches to identify and characterize the HPs of M. tuberculosis that symbolize the putative target for rationale development of a drug or antituberculosis strategy. Proteins were primarily classified based on motif and domain information, which were further analyzed for the presence of virulence factors (VFs), determination of localization, and signal peptide/enzymatic cleavage sites. 863 HPs were found, and 599 HPs were finalized based on motifs, that is, GTP (525), Trx (47), SAM (14), PE-PGRS (5), and CBD (8). 80 HPs contain virulence factor (VF), 24 HPs localized in membrane region, and 4 HPs contain signal peptide/enzymatic cleavage sites. The overall parametric study finalizes four HPs Rv0679c, Rv0906, Rv3627c, and Rv3811 that also comprise GTPase domain. Structure prediction, structure-based function prediction, molecular docking and mutation analysis of selected proteins were done. Docking studies revealed that GTP and GTPase inhibitor (mac0182344) were docked with all four proteins with high affinities. In silico point mutation studies showed that substitution of aspartate with glycine within a GTPase motif showed the largest decrease in stability and pH differentiation also affects protein's stability. This analysis thus fixes a roadmap in the direction of finding potential target of this bacterium for drug development and enlightens the efficacy of GTP as a major regulator of Mycobacterial cellular pathways.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents , Bacterial Proteins/genetics , Molecular Docking Simulation , Mycobacterium tuberculosis/genetics , Proteomics
9.
Food Chem Toxicol ; 150: 112057, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33592201

ABSTRACT

World is familiar with the viral pathogen Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2). The principle working enzymes of SARS CoV-2 have been identified as main proteases 3Cl pro which act as main regulators for SARS infection. The need for therapy is required immediately pertaining to the vulnerable conditions. Protein-ligand studies are imperative for understanding the functioning of biological interactions as they are crucial in providing a hypothetical origin for the design and unearthing of novel drug targets. Phytoconstituents from Glycyrrhiza glabra, earlier reported to be anticancerous in nature were used as repurposed drugs against SARS CoV-2 main protease 3Clpro. We analyzed the molecular interactions of protein-phytocompounds, by AutoDock Vina 4.2 tools. The best interactions of each algorithm were subjected to molecular dynamic (MD) simulations to have an insight of the molecular dynamic mechanisms involved. Selected phytoconstituents gave a good score for binding affinity with the main protease 6LU7 of SARS CoV-2 as compared to the antiviral drugs already being used in the disease therapy. DehydroglyasperinC(-8.7,-8.1,-6.7,-7.1)kcal/mol, Licochalcone D(-8.4,-8.2,-7.1,-7.9) kcal/mol, Liquiritin(-8.6,-9.0,-7.2,-7.8) kcal/mol have showed energy interactions with 3Clpro better than many FDA approved repurposed drugs; Remdesvir, Favipiravir, and Hydroxychloroquine. MD Simulation also corelates our findings for molecular docking studies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Glycyrrhiza/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Computer Simulation , Drug Evaluation, Preclinical/methods , Molecular Dynamics Simulation , Protein Structure, Tertiary , SARS-CoV-2/enzymology
10.
Adv Bioinformatics ; 2018: 6152014, 2018.
Article in English | MEDLINE | ID: mdl-30186322

ABSTRACT

The emergence of tuberculosis is at the peak; therefore to station it at its lower level we hereby try bioinformatics approach against Mycobacterium tuberculosis [M. tuberculosis] pathogenesis. Rv3906c is a conserved hypothetical gene of M. tuberculosis and contains many GTP binding protein motif DXXG which demonstrate that this gene might be processed in a GTP binding or in GTP hydrolyzing manner. This gene shows interaction with its adjacent genes as well as pcnA which is a polymerase and localized in the extracellular region and found to be a soluble protein. Rv3906c has binding pockets for calcium atom at various positions which prove that calcium might have some role during the process of this gene. GTP binding protein motif DXXG is present in various positions and calcium binds at this site with a C-score of 0.25. Mutational analysis on this motif shows the large decrease of stability after mutation of aspartate residue with glycine. Stress conditions like pH and temperature also change stability of the protein. A decrease in stability at this position might play a role in inhibition of survival of the pathogen. These computational studies of this gene might be a successful step towards drug development against tuberculosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...